New Horizons - podsumowanie dotychczasowej misji

New Horizons przeleciała obok Plutona. Kilkadziesiąt godzin misji diametralnie zmieniło nasze postrzeganie tej niewielkiej planety karłowatej.

19 stycznia 2006 roku sonda New Horizons rozpoczęła swój lot do Plutona, osiągając jednocześnie największą prędkość ucieczki spośród wystrzelonych przez człowieka obiektów. Zaledwie 13 miesięcy później NH przeleciała obok Jowisza, wykorzystując efekt grawitacyjny do przyspieszenia i skrócenia o lata czas przelotu do Plutona. Na dzień przelotu wyznaczono 14 lipca 2015 roku. Ostatni nieznany “ląd” w Układzie Słonecznym doczekał się w końcu uwagi ziemskich odkrywców.
 
Zanim jednak NH zdążyła zbliżyć się do Plutona, kosmiczny teleskop Hubble dokonał kolejnych zdumiewających odkryć. Wykryto nowe księżyce: Nix, Hydra, Kerberos oraz Styx, przy czym ostatni księżyc odkryto zaledwie trzy lata temu. To także Hubble na wiele lat określił nasze postrzeganie Plutona, jako odległej planety, pokrytej zagadkowymi plamami oraz różnicami w jasności jego powierzchni.  Wizję tę zmieniła dopiero misja NH w lipcu 2015 roku.

Reklama

Przez większość lotu NH była w stanie elektronicznej hibernacji, przerywanej co kilka miesięcy z uwagi na diagnostykę instrumentów pokładowych. Ostatni stan hibernacji zakończył się 7 grudnia 2014 roku w odległości 260 mln kilometrów od Plutona. Wybudzenie sondy nastąpiło bez problemów, a miesiąc później rozpoczęły się intensywne obserwacje naukowe.

Wstęp do sukcesu

Pierwsza faza obserwacji naukowych rozpoczęła się 6 stycznia 2015 roku i zakończona została 4 kwietnia. Pod jej koniec NH znajdowała się w odległości około 120 mln kilometrów od Plutona. Druga faza zbliżenia zakończyła się 23 czerwca, gdy NH była już w odległości około 26 mln kilometrów od celu. Wówczas obrazy Plutona były już znacznie lepsze od uzyskiwanych przez kosmiczny teleskop Hubble, jednak wciąż wielkość planety nie przekraczała kilkunastu pikseli. Trzecia faza zbliżenia zakończyła się 13 lipca, kiedy sonda znajdowała się w odległości około 1,2 mln kilometrów, co odpowiada trzykrotnemu dystansowi pomiędzy Ziemią a Księżycem.



Największe zbliżenie 

Główna faza przelotu obok Plutona nastąpiła pomiędzy 13 a 15 lipca. Wówczas NH przebywała w odległości mniejszej niż 1,2 mln kilometrów od celu swojej misji. Moment największego zbliżenia do Plutona nastąpił 14 lipca około godziny 13:50 CEST. Wówczas sonda znalazła się 13500 kilometrów od powierzchni Plutona, 29500 kilometrów od księżyca Charona, około 22000 kilometrów od księżyca Nix i 77600 kilometrów od księżyca Hydra.
 
W trakcie przelotu NH nie utrzymywała kontaktu z Ziemią. Pierwszy „ping” od sondy NH, świadczący o dobrym stanie technicznym po przelocie obok Plutona, został odebrany na Ziemi ponad 13 godzin po fakcie, czyli 15 lipca tuż przed 3 rano czasu CEST (a wysłany około 4 godzin i 25 minut wcześniej). Następnie sonda przesłała na Ziemię pierwsze (skompresowane stratnie) zdjęcia oraz wyniki obserwacji.
 
Okazało się, że pomimo olbrzymiej odległości od Słońca i skrajnie niskich temperatur, Pluton pozostał światem aktywnym, posiadającym stosunkowo młodą, niezwykle zróżnicowaną powierzchnię, która nie zawiera dużej ilości wyraźnie zarysowanych kraterów. Innymi słowy, Pluton okazał się światem tak samo żywym, jak krążący wokół Saturna Enceladus czy Europa krążąca wokół Jowisza. Jednak należy zaznaczyć, że mechanizm utrzymujący te procesy w ruchu musi być zupełnie inny. Układ Pluton-Charon nie podlega bowiem działaniu pływów – oba ciała obiegają się wzajemnie będąc zawsze skierowane ku sobie tą samą stroną, przy czym orbita Charona jest według wszelkich dotychczasowych pomiarów kołowa.

Mechanizm napędzający żywą geologię Plutona do tej pory pozostaje nieznany, chociaż zakłada się, że może być za to odpowiedzialny relatywnie ciepły ocean wody, skrywający się pod powierzchnią planety. Może on istnieć dzięki przejęciu energii z rozpadu materiałów promieniotwórczych z jądra tej planety. Procesy geologiczne Plutona są na tyle potężne, aby być w stanie wypiętrzyć ogromne, złożone głównie z lodu wodnego, masywy górskie na wysokość przekraczającą trzy tysiące metrów.
 
Zdjęcia przesłane przez sondę wskazują także na występowanie przemieszczającego się materiału na powierzchni planety. Sposób jego przemieszczania jest najprawdopodobniej zbliżony do zachowania lodu wodnego, wypływającego z ziemskich lodowców. Chociaż w tak odległym miejscu Układu Słonecznego jest to lód niezwykle egzotyczny, będący głównie zestalonym azotem (ale także metanem oraz tlenkiem węgla). Tworzy on część nowo odkrytych formacji, a zwłaszcza „serce Plutona” pokryte specyficznym rodzajem lodu i śniegu, znajdujących się w regionie nazwanym Tombaugh Regio – od nazwiska odkrywcy Plutona. To właśnie Tombaugh Regio jest prawdopodobną odpowiedzią na ponad 60- letnią zagadkę jasnej plamy na Plutonie, którą dopiero misja NH była w stanie zidentyfikować, poprzez zdjęcia z odpowiednią rozdzielczością. Wszystkie zebrane przez sondę dowody wskazują na to, że przynajmniej część powierzchni Plutona ma nie więcej niż 100 milionów lat, a prawdopodobnie jest znacznie młodsza. To bardzo niewiele jak na świat, który do tej pory uważaliśmy za zastygły kawałek lodu na granicy „cywilizowanej” części Układu Słonecznego.


Interesująca jest także relacja pomiędzy młodą, jasną powierzchnią Sputnik Planum (fragment powierzchni będący częścią Tombaugh Regio), złożoną właśnie z egzotycznego lodu, a ciemniejszymi regionami Cthulhu Regio, które wydają się o wiele starsze – prawdopodobnie stanowią najstarsze struktury geologiczne na powierzchni Plutona. W rejonie granicznym pomiędzy tymi formacjami widoczne są bowiem zerodowane kratery, częściowo wypełnione jasnym materiałem. Istnienie tego zjawiska może sugerować jakiś mechanizm transmisji materiału – być może na zasadzie przemieszczającego się lodu lub innych wypływów, tworzących właśnie tego typu formację sedymentacyjną wewnątrz istniejących wcześniej zagłębień.
 


Kolejnym intrygującym fragmentem powierzchni są także wielokątne struktury 20-30 kilometrowej szerokości, znajdujące się na jasnej powierzchni Tombaugh Regio. Mogą one świadczyć zarówno o aktywnych procesach geologicznych występujących wewnątrz planety, które napędzają zmiany na jej powierzchni, jak i być rezultatem ochładzania się i kurczenia samej lodowej pokrywy – procesu nieco przypominającego mechanizmy funkcjonujące na Księżycu, pochodzące z czasów, gdy po uformowaniu zaczął się on powoli ochładzać.

Niezwykła atmosfera Plutona

Również atmosfera Plutona okazała się być niespodzianką, rozciągając się znacznie dalej, niż zakładały to modele matematyczne z zaćmień. Analiza tego, w jaki sposób jasność gwiazdy wygasa podczas takiego przejścia, pozwala na wyznaczenie profilu atmosferycznego badanego ciała. W przypadku Plutona, krzywa jasności gwiazdy zmieniała się relatywnie powoli, co wskazywało na istnienie pewnej atmosfery tej planety. Jej bardziej precyzyjny skład określiła misja NH – pokazując, że atmosfera wykazuje zmiany w zależności od wysokości nad powierzchnią. W najdalszych regionach składa się niemal wyłącznie z azotu, a im niżej, tym pojawiają się coraz wyraźniejsze warstwy charakterystyczne dla węglowodorów – etylenu i acetylenu - powstałe w wyniku rozpadu metanu, sublimującego z powierzchni pod wpływem promieniowania ultrafioletowego pochodzącego ze Słońca. Ten sam wiatr słoneczny kształtuje również charakterystyczny, gazowy ogon, przypominający nieco kometarny, złożony z wywiewanego z Plutona w dużych ilościach azotu. Szacuje się, że w ciągu godziny ubywa go około pięciuset ton, co jest wartością bardzo dużą dla tak niewielkiego obiektu. Dotychczasowe modele sugerowały wielkości czterokrotnie mniejsze.

Wyjaśniło się także, że choć w ostatnich latach zmierzone (obserwacyjnie z Ziemi lub z orbity) ciśnienie atmosferyczne Plutona rosło, to w momencie przelotu okazało się być znacznie niższe niż zaledwie dwa lata temu. Czy na Plutonie następuje obecnie jakaś dramatyczna zmiana, której efektem jest zmiana ciśnienia atmosferycznego?
 
Część z obrazów powierzchni może nawet wskazywać na występowanie wiatrów w atmosferze Plutona lub pewnej interakcji pomiędzy sublimującym materiałem z powierzchni, a wiatrem słonecznym, wytwarzającym istotne różnice w albedo powierzchni planety. Być może jest to zjawisko nieco zbliżone do tego, co zaobserwowano na powierzchni Trytona, największego księżyca Neptuna, gdzie jest to efekt kriowulkaniczny, połączony z oddziaływaniem wiatru słonecznego.

Dowiedz się więcej na temat: Pluton | New Horizons

Reklama

Reklama

Reklama

Strona główna INTERIA.PL

Polecamy

Rekomendacje