BEAN - nowe materiały zmiennofazowe

Dzięki współpracy Lawrence Berkeley National Laboratory oraz University of California, Berkeley, powstała nowa klasa materiałów zmiennofazowych. Tego typu materiały, dzięki możliwości zmiany faz pomiędzy stanem krystalicznym a amorficznym, świetnie nadają się do produkcji tanich, nieulotnych, energooszczędnych układów pamięci.

Uczeni z Berkeley stworzyli nanokryształy ze stopów metalu i półprzewodnika. Nowy materiał nazwano BEAN od binary eutectic-alloy nanostructure (binarne nanostruktury eutektyczno-stopowe).

Reklama

Zmiana faz w BEAN, przełączanie ich pomiędzy stanami krystalicznym i amorficznym trwananosekundy i może być dokonana za pomocą prądu elektrycznego, lasera lub kombinacji obu tych metod. Nasze pierwsze BEAN stworzyliśmy ze stopu germanu i cyny. Byliśmy w stanie ustabilizować fazę krystaliczną i amorficzną oraz precyzyjnie dostroić kinetykę przełączania za pomocą prostej zmiany składu stopu - mówi Daryl Chrzan, jeden z twórców BEAN.

Stop germanu i cyny został wybrany dlatego, że w temperaturze pokojowej może istnieć w dwóch stabilnych stanach - krystalicznym bądź amorficznym. Chrzan i współpracujący z nim Joel Ager oraz Eugene Haller wykazali, że nanokryształy stopu germanu i cyny umieszczone na amorficznym ditlenku krzemu tworzą nanostruktury, które są w połowie krystalicznym metalem i w połowie krystalicznym półprzewodnikiem. Szybkie schładzanie następujące po rozpuszczeniu stopu impulem lasera prowadzi do powstania metastabilnej, amorficznej fazy w temperaturze pokojowej. Natomiast umiarkowane rozgrzanie materiału i jego powolne stygnięcie oznaczało powrót do krystalicznej podwójnej struktury - informuje Chrzan. Ditlenek krzemu działa jak inteligentna i bardzo czysta próbówka, która więzi w sobie nanostruktury tak, że interfejs BEAN/ditlenek krzemu powoduje powstanie wyjątkowych właściwości zmiennofazowych - dodaje.

Naukowcy nie zbadali jeszcze, jak odbywa się transport elektronów w materiale BEAN. Spodziewamy się, że w stanie amorficznym BEAN będzie wykazywało normalne, charakterystyczne dla metali przewodnictwo. W stanie podwójnym, BEAN będzie zawierał jedną lub więcej barier Schottky'ego, które mogą działać jak diody. Na potrzeby przechowywania danych, przewodzący stan metaliczny może oznaczać zero, a bariera Schottky'ego - jeden - wyjaśnia Chrzan.

Teraz naukowiec i jego koledzy badają, czy BEAN może wytrzymać wielokrotne przełączanie pomiędzy stanami oraz czy może zostać zaimplementowany w układzie scalonym. Chcą też utworzyć model przepływu energii w systemie i na jego podstawie opracować optymalną metodę wysyłania impulsów elektrycznych i/lub świetlnych, w celu jak najlepszego wykorzystania właściwości zmiennofazowych.

kopalniawiedzy.pl

Reklama

Najlepsze tematy

Reklama

Strona główna INTERIA.PL

Polecamy

Rekomendacje